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Triatomic Vibrational Energies

Chao-Ping Liu1 and J. J. Soares Neto1
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The generator coordinate approximation theory is formally applied to H 1
3 . A

ª secular equationº with an eigenvector of three dimensions and ª matrixº elements
of six dimensions results. Numerical solutions of this equation are the vibrational
energy levels of H 1

3 .

1. INTRODUCTION

The generator coordinate approximation (GCA) is an approximation

proposed to solve collective system problems, such as many-body nuclei and

molecules. It stands as an approximation much as the Born±Oppenheimer

approximation (Gasiorowicz, 1974) and the adiabatic approximation (Kolos,

1970). It was first proposed by Hill and Wheeler (1953). Griffin and Wheeler

(1957) simplified and further developed it. Substantial further work has been

done on it (Lathouwers and Van Leuven (1982). More specifically, the GCA

was applied to calculate numerically the vibration-rotation energy levels of

H 1
2 (Deumens et al., 1986). Other aspects of the application of the GCA to

H 1
2 have been treated (Lathouwers et al., 1987; Broeckhove et al., 1990,

1995). It is natural therefore to extend and apply the GCA to triatomic systems.

In this paper, we develop the formal aspects of the application of the

GCA to triatomic systems. It will be seen that a ª secular equationº with an

eingenvector of three dimensions and a ª matrixº of six dimensions results

for the vibrational energy levels.

This paper is organized as follow. Section 2 summarizes the GCA theory.

Section 3 outlines the application of the GCA to diatomic systems. Finally,

Section 4 details the application of the GCA to triatomic systems.
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2. GENERATOR COORDINATE APPROXIMATION

The GCA (Lathouwers and Van Leuven, 1982) proposes for the wave

function c (x)

c (x) 5 #
b

a

F ( a ) x (x | a ) d a (1)

where F ( a ) is a ª continuous superposition indexº called the weight function,

x (x | a ) is a basis called the intrinsic state, and a is a parameter called the

generator coordinate. We then form the variational energy,

E [F ( a )] 5
^ c (x) | H | c (x) &
^ c (x) | c (x) &

(2)

where H is the Hamiltonian of the system being considered. E [F ( a )] becomes

E [F ( a )] 5
* * F*( a )H ( a , b )F ( b ) d a d b
* * F*( a ) D ( a , b )F ( b ) d a d b

(3)

where

H ( a , b ) 5 ^ x ( a ) | H | x ( b ) & (4)

D ( a , b ) 5 ^ x ( a ) | x ( b ) & (5)

H ( a , b ) is called the Hamiltonian kernel and D ( a , b ) the overlap kernel.

Minimizing the variational energy expression (2) with respect to F ( a ),

one obtains the Wheeler equation,

#
b

a

[H ( a , b ) 2 E D ( a , b )]F ( b ) d b 5 0 (6)

Solution of the Wheeler equation then gives the upper bound energy levels

of the system.

3. DIATOMIC SYSTEMS

The Hamiltonian of the diatomic system is (Deumens et al., 1986)

H 5 2
1

2 m
D -

R 2
1

2m o
i

D -
r i 2

1

2M 1 o i

-
¹ -

R i 2 2

1
Z1Z2

R
2 o

i

Z1

|
-
r i 2

-
R 1 |

2 o
i

Z2

|
-
r i 2

-
R 2 |

1 o
i , j

1

|
-
r i 2

-
r j |

(7)

where Z1 and M1 are the charge and mass of one nucleus, Z2 and M2 are the
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charge and mass of the second nucleus, m is the mass of the electron,
-

R 1

and
-

R 2 are the position vectors of the two nuclei,
-
r i are the position vectors

of the electrons, m is the reduced mass,

m 5
M1M2

M
(8)

M 5 M1 1 M2 (9)
-

R 5
-

R 2 2
-

R 1 (10)

and the origin of the reference frame is the center of mass of the nuclei. We

can separate the Hamiltonian into an electronic Hamiltonian and a nuclear
kinetic energy part,

H (r,
-

R ) 5 2
1

2 m
D -

R 1 He(r,
-

R ) (11)

The solution for the electronic Hamiltonian He(r,
-

R ) is

He(r |
-

a ) f (r |
-

a ) 5 U ( a ) f (r |
-

a ) (12)

where
-

a is chosen to be the equilibrium
-

R parameter. U ( a ) is the effective

potential energy curve.
For the intrinsic state x (r,

-
R |

-
a ) we can form the product

x (r,
-

R |
-

a ) 5 f (r,
-

a ) F 1 |
-

R 2
-

a |
W 2

5

(13)

where F ( |
-

R 2
-

a | /W ) is a nuclear wave function and W is the width of the
nuclear wave function. Demanding the limit

lim
W ® 0

F 1 |
-

R 2
-

a
W 2 5 d (

-
R 2

-
a ) (14)

we have the adiabatic approximation wave function,

c (r,
-

R ) 5 # F (
-

a ) f (r |
-

a ) d (
-

R 2
-

a ) d
-

a

5 F (
-

R ) f (r |
-

R ) (15)

x (r,
-

R |
-

a ) thus formed, we have for the GCA wave function

c (r,
-

R | W ) 5 # F (
-

a | W ) f (
-
r |

-
a ) F (

-
R |

-
a ,W )d

-
a (16)
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and for the Wheeler equation,

# [H (
-

a ,
-

b | W ) 2 E (W ) D (
-

a ,
-

b | W )]F (
-

b | W ) d
-

b 5 0 (17)

where

H (
-

a ,
-

b | W ) 5 ^ x (
-

a , W ) | H | x (
-

b , W ) & (18)

D (
-

a ,
-

b | W ) 5 ^ x (
-

a , W ) | x (
-

b , W ) & (19)

Expanding now the weight function in terms of Wigner functions (Deu-
mens et al., 1986; Thompson, 1994)

F (
-

a | W ) 5 o
JM

e iM f a d J
MK( u a )e iK g a f J

MK( a | W ) (20)

we have for the GCA wave function

c JM(r,
-

R | W ) 5 # f J
MK( a | W )e iM f a d J

MK( u a )e iK g a

3 f K(r |
-

a ) F (
-

R |
-

a , W ) d
-

a (21)

The most general wave function will be

c (r,
-

R | W ) 5 o
JM

c JM(r,
-

R | W ) (22)

Furthermore , using unitary rotation operators (Lathouwers and Van Leuven,

1982), we can write the GCA wave function in terms of angular momentum

projection operators.

c JM(r,
-

R | W ) 5 # f J
MK( a | W )e iM f a d J

MK( u a )e iK g a

3 5e( f a , u a , g a ) f K(r | a eÃz)5n( f a , u a , g a )

3 F (
-

R | a eÃz , W ) a 2 d a d f a sin u a d u a d g a (23)

5 #
`

0

f J
MK( a | W )P J

MK x K(r,
-

R | a eÃz , W ) a 2 d a (24)

Here

P J
MK 5

2J 1 1

8 p 2 # d V D J*
MK( V )R ( V ) (25)
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is the angular momentum projection operator; in addition,

D J
MK( V ) [ e 2 iM f a d J

MK( u a )e 2 iK g a (26)

are the Wigner functions,

R ( V ) 5 Re( V ) Rn( V )

Re( V ) [ e 2 i f a Jz e 2 i u a Jye 2 i g a Jz (27)

Rn( V ) [ e 2 i f a Jze 2 i u a Jy e 2 i g a Jz

are the unitary rotation operators, where Re( V ) is the unitary rotation operator

for the electron wave function and Rn( V ) is the unitary rotation operator for

the nuclear wave function, and

V [ ( f a , u a , g a ) (28)

d V [ #
2 p

0

d f #
p

0

sin u d u #
2 p

0

d g (29)

are the Euler angles.

Applying the variational principle again to the variational energy (2)

using (23), we have the Wheeler equation,

#
`

0

[H J
KK( a , b | W ) 2 E J

K(W ) D J
KK( a , b | W )] f J

K( b | W ) b 2 d b 5 0 (30)

where

H J
KK( a , b | W ) 5 ^ x K( a eÃz , W ) | HPJ

KK | x K( b eÃz , W ) & (31)

D J
KK( a , b | W ) 5 ^ x K( a eÃz , W ) | P J

KK | x K( b eÃz , W ) & (32)

are the angular momentum projected kernels.

Expanding now the f J( a | W ) in an oscillator basis { fn},

f J( a | W ) 5 o
n

d J
n(W ) fn( a ) (33)

we find that the Wheeler equation (30) reduces to the algebraic equation

(Deumens et al., 1986; Deumens and Lathouwers, 1983)

o
n

[H J
mn(W ) 2 E D J

mn(W )] d J
n(W ) 5 0 (34)

where

H J
mn 5 # fm( a )H J( a , b | W ) fn( b ) d a d b (35)
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and

D J
mn(W ) 5 # fm( a ) D J( a , b | W ) fn( b ) d a d b (36)

The solutions of equation (34) give the vibrational energy levels for a given

total angular momentum J.

4. TRIATOMIC SYSTEMS

We treat the simplest triatomic system, H 1
3 . Generalization to unequal-

mass nuclei is easily done. For this system we demand first that (Lathouwers

and Van Leuven, 1982)
-

a 10 1
-

a 20 1
-

a 30 5 0 (37)

where the subscript denotes the chosen reference frame. This will insure that

the translational energy of the center of mass of H 1
3 will not be taken into

account.
We next demand that (Lathouwers and Van Leuven, 1982; Wigner, 1959)

-
a 10 5 a 10eÃz

-
a 20 5 a 20xeÃz 1 a 20zeÃz (38)

This will insure that we do not take into account different systems that differ
only by a rotation of the H 1

3 system as a whole.

Then,

a 20x 1 a 30x 5 0

a 30y 5 0

a 10 1 a 20z 1 a 30z 5 0 (39)

We relabel,

a 10 5 m 1

a 20x 5 m 2

a 20z 5 m 3 (40)

Now, the GCA wave function becomes,

c (
-
r 1,

-
r 2,

-
R 1,

-
R 2,

-
R 3 | W ) 5 # F (

-
a 1,

-
a 2,

-
a 3 | W ) f (

-
r 1,

-
r 2 |

-
a 1,

-
a 2,

-
a 3)

3 F (
-

R 1,
-

R 2,
-

R 3 |
-

a 1,
-

a 2,
-

a 3, W ) d
-

a 1 d
-

a 2 d
-

a 3 (41)
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where
-

a 1,
-

a 2,
-

a 3 denote the reference frame
-

a 10,
-

a 20,
-

a 30 rotated through

the Euler angles V [ ( f , u , g ). Since there are only three internal generator

coordinates m 1, m 2, m 3, we expand (Lathouwers and Van Leuven, 1982)

F JM 5 o
JM

f J
MK( m 1, m 2, m 3 | W )D J*

MK( V ) (42)

The GCA wave function becomes

c (
-
r 1,

-
r 2,

-
R 1,

-
R 2,

-
R 3 | W )

5 o
JM # f J

MK( m 1, m 2, m 3 | W )e iM f d J
MK( u )e iK g

3 f (
-
r 1,

-
r 2 |

-
a 1,

-
a 2,

-
a 3) F (

-
R 1,

-
R 2,

-
R 3 |

-
a 1,

-
a 2,

-
a 3, W ) d m 1 d m 2 d m 3 d V

5 o
JM # f J

MK( m 1, m 2, m 3 | W )e iM f d J
MK( u )e iK g

3 x J
MK(

-
r 1,

-
r 2,

-
R 1,

-
R 2,

-
R 3 | m 1, m 2, m 3, V , W ) d m 1 d m 2 d m 3 d V

5 o
JM # f J

MK( m 1, m 2, m 3 | W )P J
MK

3 x J
MK(

-
r 1,

-
r 2,

-
R 1,

-
R 2,

-
R 3 | m 1, m 2, m 3, 0, W ) d m 1 d m 2 d m 3 (43)

The Wheeler equation is then

#
`

0 #
`

0 #
`

0

[H J
MK( m 1, m 2, m 3, n 1, n 2, n 3 | W )

2 E J
MK(W ) D J

MK( m 1, m 2, m 3, n 1, n 2, n 3 | W )

3 f J
MK( n 1, n 2, n 3 | W ) d n 1 d n 2 d n 3 (44)

where

H J
MK( m 1, m 2, m 3, n 1, n 2, n 3 | W )

5 ^ x J
MK(

-
r 1,

-
r 2,

-
R 1,

-
R 2,

-
R 3 | m 1, m 2, m 3, 0, W ) | HPJ

MK |

3 x J
MK(

-
r 1,

-
r 2,

-
R 1,

-
R 2,

-
R 3 | n 1, n 2, n 3, 0, W ) & (45)

and

D J
MK( m 1, m 2, m 3, n 1, n 2, n 3 | W )

5 ^ x J
MK(

-
r 1,

-
r 2,

-
R 1,

-
R 2,

-
R 3 | m 1, m 2, m 3, 0, W ) | P J

MK |

3 x J
MK(

-
r 1,

-
r 2,

-
R 1,

-
R 2,

-
R 3 | n 1, n 2, n 3, 0, W ) & (46)
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We now expand f J
MK( n 1, n 2, n 3 | W ) in oscillator bases,

f J
MK( n 1, n 2, n 3 | W ) 5 o

i
A J

i ( n 2, n 3, W ) fi ( n i)

5 o
i 1 o j

B J
ij( n 3, W ) fj ( n 2) 2 fi ( n 1)

5 o
i

o
j

B J
ij ( n 3, W ) fj ( n 2) fi ( n 1)

5 o
i

o
j 1 o k C J

ijk(W ) fk( n 3) 2 fj ( n 2) fi ( n 1)

5 o
i

o
j

o
k

C J
ijk(W ) fk( n 3) fj ( n 2) fi ( n 1) (47)

The Wheeler equation becomes

#
`

0 #
`

0 #
`

0

[H J
MK( m 1, m 2, m 3, n 1, n 2, n 3 | W )

2 E J
MK(W ) D J

MK( m 1, m 2, m 3, n 1, n 2, n 3 | W )]

3 F o
i

o
j

o
k

C J
ijk(W ) fk( n 3) fj ( n 2) fi ( n 1) G d n 1 d n 2 d n 3 (48)

Integrating with fl( m 3) fm( m 2) fn( m 1), we have

#
`

0 #
`

0 #
`

0 #
`

0 #
`

0 #
`

0

fl( m 3) fm( m 2) fn( m 1)

3 [H J
MK( m 1, m 2, m 3, n 1, n 2, n 3 | W )

2 E J
MK(W ) D J

MK( m 1, m 2, m 3, n 1, n 2, n 3 | W )]

3 F o
i

o
j

o
k

C J
ijk(W ) fk( n 3) fj ( n 2) fi ( n 1) G

3 d n 1 d n 2 d n 3 d m 1 d m 2 d m 3 5 0 (49)

or

o
i

o
j

o
k

[H J
lmnkji(W ) 2 E J

MK(W ) D J
lmnkji(W )]C J

ijk(W ) 5 0 (50)
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where

H J
lmnkji(W ) 5 #

`

0 #
`

0 #
`

0 #
`

0 #
`

0 #
`

0

fl( m 3) fm( m 2) fn( m 1)

3 H J
MK( m 1, m 2, m 3, n 1, n 2, n 3 | W ) fk( n 3) fj ( n 2) fi ( n 1)

3 d n 1 d n 2 d n 3 d m 1 d m 2 d m 3 (51)

and

D J
lmnkji (W ) 5 #

`

0 #
`

0 #
`

0 #
`

0 #
`

0 #
`

0

fl( m 3) fm( m 2) fn( m 1)

3 D J
MK ( m 1, m 2, m 3, n 1, n 2, n 3 | W ) fk( n 3) fj ( n 2) fi ( n 1) (52)

3 d n 1 d n 2 d n 3 d m 1 d m 2 d m 3

We thus have a ª secular equationº with a three-dimensional eigenvector

C J
ijk(W ) and six-dimensional ª matrixº elements. The solutions of this ª secular

equationº will give vibrational energy levels for a given J and W.

5. CONCLUSION

Following the application of the generator coordinate approximation to

diatomic systems to calculate the vibrational energies, we have applied the

generator coordinate approximation to H 1
3 to calculate also the vibrational

energies. We have presented the formal aspects of this application. It is
seen that a ª secular equationº with a three-dimensional eigenvector and six-

dimensional ª matrixº elements results.
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