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Triatomic Vibrational Energies

Chao-Ping Liu' and J. J. Soares Neto'
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The generator coordinate approximation theory is formally applied to HY. A
“secular equation” with an eigenvector of three dimensions and “matrix” elements
of six dimensions results. Numerical solutions of this equation are the vibrational
energy levels of Hy .

1. INTRODUCTION

The generator coordinate approximation (GCA) is an approximation
proposed to solve collective system problems, such as many>body nuclei and
molecules. It stands as an approximation much as the Born—Oppenheimer
approximation (Gasiorowicz, 1974) and the adiabatic approximation (Kolos,
1970). It was first proposed by Hill and Wheeler (1953). Griffin and Wheeler
(1957) simplified and further developed it. Substantial further work has been
done on it (Lathouwers and Van Leuven (1982). More specifically, the GCA
was applied to calculate numerically the vibration>rotation energy levels of
H7 (Deumens et al., 1986). Other aspects of the application of the GCA to
H7 have been treated (Lathouwers et al., 1987; Broeckhove et al., 1990,
1995). It is natural therefore to extend and apply the GCA to triatomic systems.

In this paper, we develop the formal aspects of the application of the
GCA to triatomic systems. It will be seen that a “secular equation” with an
eingenvector of three dimensions and a “matrix” of six dimensions results
for the vibrational energy levels.

This paper is organized as follow. Section 2 summarizes the GCA theory.
Section 3 outlines the application of the GCA to diatomic systems. Finally,
Section 4 details the application of the GCA to triatomic systems.
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2. GENERATOR COORDINATE APPROXIMATION

The GCA (Lathouwers and Van Leuven, 1982) proposes for the wave
function (x)

b
V(x) = J F(ayy(xlo) do (1

a

where F(Q) is a “continuous superposition index” called the weight function,
Y(xlot) is a basis called the intrinsic state, and o is a parameter called the
generator coordinate. We then form the variational energy,

) HIN(x)Y
W (x))
where H is the Hamiltonian of the system being considered. E[F (o)] becomes

[ F*oH(o.BF(B) do dB
ELF@) = )M, B)F(B) dot dp ®)

E[F(Q)] = (2)

where
H(a, B) = (o)l Hlx(B)) 4)
Ale, B) = (u@)lx(B)) (5

H(a, B) is called the Hamiltonian kernel and A(a., B) the overlap kernel.
Minimizing the variational energy expression (2) with respect to F (),
one obtains the Wheeler equation,

b
Jw&m—MQmmmw=o ®)

Solution of the Wheeler equation then gives the upper bound energy levels
of the system.

3. DIATOMIC SYSTEMS

The Hamiltonian of the diatomic system is (Deumens ef al., 1986)

— _L - _L - _L =, 2
H= 2“ AR 2m Z, Ar,- ZM(Z, Rl)

VAVA) VA 2 1
+ - 5. = T 5. -+ 5 > (7
R Zr: lr; — Ryl Zr: lr; — R»l ;jh’f—rﬂ

where Z; and M, are the charge and mass of one nucleus, Z, and M> are the
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-
chargg and mass of the second nucleus, m is the_srnass of the electron, R
and R» are the position vectors of the two nuclei, r; are the position vectors
of the electrons, W is the reduced mass,

_ MM,
n Iy (3)
M= M + M, )
- - -
R = R> — Ry (10)

and the origin of the reference frame is the center of mass of the nuclei. We
can separate the Hamiltonian into an electronic Hamiltonian and a nuclear
kinetic energy part,

HnB) = — A7 + H.(- B 11
(l", )_ ZH R e(ra ) ()

The solution for the electronic Hamiltonian He(r, ;2;) is
- - -
H(rlo)¢(rla) = U@)d(rlar) (12)

- -
where o is chosen to be the equilibrium R parameter. U (o) is the effective
potential energy curve.
For the intrinsic state x(r, R|OL) we can form the product

w(r, Rld) = &(r, d)® ('R ” ') (13)

- -
where @ (IR — al/W) is a nuclear wave function and W is the width of the
nuclear wave function. Demanding the limit

- -
IR —a

W—0

lim q)( ) =38R — o) (14)

we have the adiabatic approximation wave function,
Y(r, R) = J F@)d(rlo)S(R — o) dot
— i
= F(R)O(rIR) (15)

x(r, El(_x’) thus formed, we have for the GCA wave function

V(r,RIW) = J FoUIW)d(rlod)D(RIcL,W)dd. (16)
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and for the Wheeler equation,
J[H(&’,E‘lw/) — EOV)A, BIWNF@IW)df =0 (17)

where

H(d, BIW) = G, w)lHI (B, W)) (18)
AL, BIw)= (e, W)lx(B. W)) (19)

Expanding now the weight function in terms of Wigner functions (Dew
mens et al., 1986; Thompson, 1994)

F(olw) = > ™% 11 (O)e KT Fl(al W) (20)
we have for the GCA wave function

W, E|W) = Jfﬁm(odW)e iMba d1(0g)e Kt
X o x(rld)DO(RICL, W) do. 1)
The most general wave function will be

U(r, RIW) = > Wor, RIw) (22)

Furthermore, using unitary rotation operators (Lathouwers and Van Leuven,
1982), we can write the GCA wave function in terms of angular momentum
projection operators.

Vo, ?z’lw/) = J Fl(o W )e ™Mo g4, (Oy)e K1
X %e(d)a, eaa Ya)d)K(r'aél)%"(d)% eaa YOL)
X ® (Rloe., W)Yol dow dbo sin O dOo dye (23

= J Fhx(@IW) Pk wx(r, Rlow., W)Yol do (24)
0

Here

_2J+1

Pk g7’

J dQ D Q)R (Q) (25)
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is the angular momentum projection operator; in addition,
Di(Q) = e Mugl(0g)e K1 (26)
are the Wigner functions,
R() = R(Q) R()
RAQ) = ¢ oz o ~i0lyp ~ital: 27)
Ri(Q) = ¢ ~bazp 00ty o —ital:

are the unitary rotation operators, where R,(Q)) is the unitary rotation operator
for the electron wave function and R,({) is the unitary rotation operator for
the nuclear wave function, and

Q = (¢a O, Vo) (28)

21 i 2
dQ = dp | sin 0 d0 dy (29)
0 0 0
are the Euler angles.

Applying the variational principle again to the variational energy (2)
using (23), we have the Wheeler equation,

JﬂHMmmwrﬂmWMMmmwnwmwmwB=o@m

0
where
Hix(o, BIW) = (yx(oe., W) HPklyx(Be:, W)) (31)
Akx(a, BIW) = (ux(ae-, W)IPklyx(Be-, W)) (32)

are the angular momentum projected kernels.
Expanding now the /(o) in an oscillator basis { f,},

Fdw)y =3 dyw)filo) (33)

we find that the Wheeler equation (30) reduces to the algebraic equation
(Deumens et al., 1986; Deumens and Lathouwers, 1983)

S [Hu(W) — ENsi(W)] d(W) = 0 (34)
where

zmzjmwm@mmmmmw (35)
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and
AW = J Sl A (o, BIW) fu(B) dow dp (36)

The solutions of equation (34) give the vibrational energy levels for a given
total angular momentum J.

4. TRIATOMIC SYSTEMS

We treat the simplest triatomic system, Hi . Generalization to unequal>
mass nuclei is easily done. For this system we demand first that (Lathouwers
and Van Leuven, 1982)

- - -
Qg + Ay + Q39 =0 (37)

where the subscript denotes the chosen reference frame. This will insure that
the translational energy of the center of mass of Hi will not be taken into
account.

We next demand that (Lathouwers and Van Leuven, 1982; Wigner, 1959)

-

Qo = Ojoe:
-3 " A
Ol2g = Olaoxe: + Oloo-e: (38)

This will insure that we do not take into account different systems that differ
only by a rotation of the H3 system as a whole.

Then,
Oy + Oz0x = 0
039y = 0
Oip + Oo: + 030- = 0 (39)
We relabel,
Ao = K1
Q2ox = H2
Q20: = U3 (40)

Now, the GCA wave function becomes,
2 S Sy S 4 - T 2 S B
V(r1, 72, Ry, Ro, RsIW) = | F(ouy, 0o, 03IW)(r 1, ralony, oy, 0L3)

e e B S T B - =5 =S
X@(R],Rz,R3|(X1,0Lz,OL3, W)do do,dos  (41)
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I 2 - - -
where oy, 02, a3 denote the reference frame oLig, 029, O30 rotated through
the Euler angles (2 = (¢, 0, 7). Since there are only three internal generator
coordinates Wi, M2, M3, we expand (Lathouwers and Van Leuven, 1982)

FM = ; P, Ba, Wl W) D 3(Q) (42)

The GCA wave function becomes

S50 D T T
V(r1, ra, Ri, Ra, R3lW)
= ; J L, po, wslw)e M d s (0)e &

2 S 4 - = - ey
X O(r1, ralay, o, a3)D(R1, Ry, Raloly, oo, oLz, W) diy dy dps d€

~

=2 S, o, wslw)e ™ d i x(0)e
J

J 2 s S S}
X xhik(r1, 12, Ri, Ra, Ralp, po, ps, Q, W) duy dus dus dQ

~

= ;’ Fux(p, ta, PslW)P ik
J

7 A e S B
X qux(ri, r2, Ri, Ra, Rlui, po, w3, 0, W) dua dpas dus (43)

The Wheeler equation is then

J J J [Hx(p, 12, W3, Vi, Va, V3l )
0 0 0

— Elx(W) A, Wa, 13, Vi, Vo, valIW)

X fﬁ/[K(W, Va, V3lW) dvi dva dv; (44)
where
Hi( 1, Mo, W3, Vi, V2, V3II)
J - - - - - J
= (qux(ri, ra, Ri, Ra, R3lpy, pa, ps, 0, W)IHPyl
7 - i - - -
X xux(r1, r2, Ri, Ra, R3lvi, va, v3, 0, W)) (45)
and

Ak, B2, 13, Vi, Va, V3lW)
_ J - - - - - J
= (xux(r1, ra, R1, Ra, R3lpa, pa, ps, 0, W)IPyxl
J i 2 B ] - -
X xux(ri, r2, Ri, Ra, Rslvi, va, v3, 0, W)) (46)
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We now expand fix(Vi, va, v3IW) in oscillator bases,

Frur(vi, va, V3l W) = > Al (va, v, W) fi(vi)

=Z(§%mwwwﬁﬂm

= 33 BY (va. W) f(v2) fi(v)

Z ; (; C{jk(W)ﬁc(Vs)) Ji(v2) fi(vi)

Zggcmwmmmmmm> (47)

The Wheeler equation becomes

J J J [Hx(p1, fa, W3, Vi, Va, V3IIW)
0 0 0

- E%“((W)A%W(Hla W2, U3, Vi, Vo, V3lI¥)]
X[Zzgcwmmwmwﬂm]mew3 (48)
roJ

Integrating with fi(13) fin(12) fu(11), We have

J J J J J J Ji3) fn(12) fu( 1)
0 0 0 0 0 0

X [Hy(1, Loy W3, Vi, Vo, V3IW)
— Evx(W) A, 1o, s, Vi, Va, Vil)]

X zz;CMMMMﬂwﬂm]
1 J
X dvi dvy dvs d}l] d}lz d},L3 =0 (49)

or

o]
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HlJmnkji(W):J J J J J J Jilk3) f(W2) fu(r)
o Jo Jo Jo Jo Jo

X Hy(p1, o, W3, Vi, Va, V3l fi(v3) f(v2) fi (V1)
X dV1 de dV3 d}l] d}lz d},L3 (51)

N (W>=J J J J J J LA A(R)
o Jo Jo Jo Jo Jo

X Atk (W1, 2, B3, Vi, V2, V3 fivs) fi(v2) fi(v) - (52)
X dvi dvy dvs duy dus dus

where

and

We thus have a “secular equation” with a three>dimensional eigenvector
Cl(W) and six>dimensional “matrix” elements. The solutions of this “secular
equation” will give vibrational energy levels for a given J and W.

5. CONCLUSION

Following the application of the generator coordinate approximation to
diatomic systems to calculate the vibrational energies, we have applied the
generator coordinate approximation to H3 to calculate also the vibrational
energies. We have presented the formal aspects of this application. It is
seen that a “secular equation” with a three>dimensional eigenvector and six»
dimensional “matrix” elements results.
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